五年级数学教案 15篇
作为一名教学工作者,通常会被要求编写教案,借助教案可以更好地组织教学活动。我们该怎么去写教案呢?下面是小编整理的五年级数学教案 ,仅供参考,希望能够帮助到大家。
五年级数学教案 1教学目标和要求
1、通过练习,进一步理解分数乘法的意义;
2、较熟练地进行分数乘法的计算;
3、能正确解决简单的分数乘法的实际问题,体会数学与生活的密切联系。
教学重点
教学难点
教学准备
教学时数2课时
教学过程
一、计算练习
1、教科书第10页第3题。
学生独立计算,指名板演,集体讲评。
2、教科书第11页第11题。
先让学生根据分数的意义进行判断,再计算确认。
二、基本练习
1、教科书第10页第1、2、4、5、6、7题。
学生独立完成,指名板演并说说解题思路,集体讲评。
2、教科书第11页第8题。
如果有时间,可以把剩下用品的现价全部算出来。
3、教科书第12页第12、13、14题。
同桌互相讨论完成,集体讲评。
三、拓展练习
教科书第11页第9题。
每人提三个问题后尝试解决。同桌交流。有异议提出来让全班评议。
四、尝试练习
教科书第12页“你知道吗?”。
鼓励学生回家查找资料,把问题求出来。比一比,谁完成得最快。
五年级数学教案 2一、学习目标
1.在用小正方形拼长方形的活动中,体会找一个数的因数的方法,提高有序思考的能力。
2.在1-100的自然数中,能找出某个自然数的所有因数。
3. 在探索中,感受数学知识的内在联系,体会数学内容的奇妙、有趣,产生对数学的好奇心。
二、学情分析
学生在乘法算式中对乘数已经有比较熟练的理解,学习因数可以在乘法算式的基础上让学生理解和掌握。
三、教学过程
(一)创境导入。
师:同学们喜欢做拼图的游戏吗?(学生回答)
师:这节课我们就通过拼图来学习一个新知识。
(设计意图:拼图游戏学生很喜欢,创设拼图的情境来激发学生的学习积极性和探究的欲望。)
(二)探索新知。(课件)
1. 师:请拿出准备好的正方形,在你们的小组里用你们准备的12个小正方形拼成一个长方形,有哪几种拼法?也可以使用自己喜欢的方式拼摆或涂画的方式独立操作,边摆边做好记录。然后,把你拼摆的过程和你的伙伴说说。
2. 班内展示交流。(请学生演示自己摆的成果)
(设计意图:通过动手操作,让学生在操作中了解事物的特征,明确正方形的个数与因数的关系。学生通过动手操作得到了大量的学习资源,为后面的学习奠定了基础。学生与学生之间的互相交流,更加利于学生对知识的掌握。他们在相互的探讨中,使问题得到解决。)
3. 师:你能把这些摆法用算式表示出来吗?(根据学生的回答,教师板书:1×12=12 2×6=12 12×1=12 6×2=12 3×4=12 4×3=12 )
4. 师:请同学们观察一下,哪两道算式的因数一样? 12的因数有哪些呢? 请学生按顺序说出来。(1、2、3、4、6、12。)
(设计意图:学生观察算式,发现找因数的方法和写乘法算式有一定的关系,体会了“想乘法算式”找因数的方法,为下面的思考找因数的方法奠定了基础。)
5. 思考问题:
(1)怎么样找出一个数的全部因数?
(2)有什么方法可以将全部因数找齐,一个都不漏?
小组交流,全班交流。
学生想到的方法可能是:从小到大找;一对一对找
6. 找出9的全部因数
(1)试一试,看谁能挑战成功。(学生独立找9的因数)
(2)交流找的方法。
板书:9的因数有:1、3、9
观察9的全部因数,你有什么发现吗?(9最小的因数是1,最大的是9,??)
7. 试一试:你能找出15的全部因数吗?找完后交流,说一说15最大的因数是多少,最小的呢?
(设计意图:教给学生找因数的方法,引导学生关注“有序思考”的方法,进行了学习方法的指导。)
8. 小结:找一个数的因数,可以用乘法依次一对一对的找。这样有顺序的给一个倍数找因数,好处就是不重复、不漏找。
(三)练习深化。
1. 师:同学们已经掌握了找因数的方法,现在看看谁找得快,请同学们把课本第9页的1、2题做出来。
学生独立完成。
投影展示一名学生1、2题的结果,让学生说一说,集体评价。
[设计意图:通过练一练活动,进一步加深学生对找一个数的因数的方法的理解和运用,并具有一定的分析和归纳能力。]
2. 师:同学们已经学会了用拼长方形找因数的方法,现在能不能在小方格中画出长方形找因数呢?请把第3题做出来。
学生独立完成。
教师让1名学生到黑板上的小方格中画,并把因数找出来。
学生做完后,看看到黑板上做题的同学做得对不对,引导学生进行评价。 (设计意图:通过练一练活动,利用数形结合进一步体会找因数的方法。)
3. 投影:48名学生排队,要求每行的人数相同,可以排成几行?
请同学们先独立思考,然后小组内交流一下。
班内交流:(每行8人可以排成6行,也可以每行6人排成8行。每行12人可以排成4行,也可以每行4人排成12行。每行24人可以排成2行,也可以每行2人排成24行。每行48人可以排成1行,每行1人排成48行。还有一种,每行16人可以排成3行,也可以每行3人排成16行。)
思考:同学们想一想,这种排队法与找因数有什么关系呢?(教师对学生及时提出表扬:同学们说得很好,我们利用找因数的方法可以解决很多实际问题 。)
(设计意图:运用知识解决实际问题,进一步体会找因数的方法。)
4. 游戏:好朋友互报学号,分别找出对方学号数的全部因数,比比谁能有对有快!
(四)当堂检测。
1、找一找,填一填。
1 2 4 7 8 12 16 24 32
24的全部因数 32的全部因数 既是24的因数也是32的因数
2、说一说下面的数各有几个因数。
()个( )个()个 ()个 ( )个 ( )个
(设计意图:当堂检测,了解目标达成情况。)
( ……此处隐藏17141个字……况。2个有三种不同摆法,6个有几种呢?你能很快猜出有几种吗?
生:6、7、8、9、10、12种等。
师:那么,究竟有几种呢?想试试吗?(生:想!)
师:两人一组,边摆边思考,怎样说才能让大家明白你的摆法?
合作学习:
(1)小组摆、交流。教师在巡视时及时向同学们推荐了同学中作记录的学习方法。并问:为什么要记呢?
生:包装方式多,记一记,不会重复。
(2)大组交流、汇报。
两人一组汇报,要求一位同学边说边摆,另外一位同学选择相应的直观图贴在黑板上。
学生汇报:总共有9种不同的包法。(见下图)
师生归纳:按接触面思考:A、B、C各一种;AB、AC、BC各两种。
师:这种方法怎么样?它是按什么思考的?
生:按接触面来思考;这样思考有序,不容易漏掉。
师:还有其他思考方法吗?能不能将问题简化,比如以两个一组作为一个整体,将两个A面重叠(上下叠)的长方体看作一个大长方体,这样就转化为3个长方体的包装问题了,可以有几种包法?
生:按上下、前后、左右的方向拼摆,有3种包法。
师:大家从中受到什么启发?还可以怎样考虑?。
生:哦,我明白了!还可以将两个B面重叠(前后叠)的长方体看作一个大长方体,按上下、前后、左右的方向拼摆,又有3种包法。
生:还可以将两个C面重叠(前后叠)的长方体看作。
生:(抢着说)对,对!它也有3种包法。因此6个长方体共有33=9种不同的包法。
师:这种方法怎么样?
生:这种方式很好,很清楚。
师:先把2个小长方体看作一个大长方体,那么6个小长方体就可以看作3个大长方体。2个小长方体间的位置不同,就得到了3个不同长方体的包装问题。这种将复杂的问题转化为已经解决简单问题,是我们解决问题的基本方法,很重要。
4、师:现在我们来猜猜,哪些样式的表面积较大、较小?说理由,并算算。
生:都是C面重叠的包装样式的表面积较大,因为重叠部分面积最小;上图第一列中的A面重叠、AB、AC面重叠的包装样式表面积较小,因为重叠部分面积较大
师:哪个表面积更小些呢?
生:可以算一算。
师:假设A面面积为6,B面为3,C面为2。
生:62+312+212=72,64+36+212=66,64+312+26=72。这几个表面积都比较小。
三、讨论现实生活中的各种包装。
教师取一种物品(火柴),先请大家猜可能的包装样式,再说说理由,结合实际谈想法。
学生打开一包火柴观察后说,(见图)这种样式表面积小,也就是材料省。
师:是不是厂商对商品的包装都考虑节省材料呢?
生:不一定。
师:分小组,互相观察带来的其他物品,说说自己的看法。
学生纷纷举例说明:有的考虑经济、实用,有的考虑美观、大方,有的考虑方便不同的需要就有不同的标准。
四、小结。
师:这节课对你有什么启示?
生:生活中有许多事,可以用数学方法来解决;包装这一小问题,学问可不小。
五年级数学教案 15设计意图:教学实践告诉我们,教学的成败,学生的学习效果如何,在很大程度上取决于学生的参与程度。教师的全部劳动,归根到底就是为了学生的主动学习。因此,激发学生的参与意识,让学习成为学生发自内心的需要,让课堂成为学生获取知识的乐园是我们每位教师应努力的方向。还有对学生的评价,包罗万象,既有对学习方法的评价,又有对学习情感的评价,也有对自己的鞭策鼓励。这样的评价,教师只需适当点拨、启发,便能让学生在被他人肯定的同时得到极大的满足感,增强学生主动参与探究的自信心,从而把主动探究学习作为自己学习生活中的第一乐趣。这节课我在设计上注重这两点,来设计和展开教学。
教学要求 在知道两数特殊关系的基础上,使学生学会用不同的方法求两个数的最大公约数,培养学生的观察能力。
教学重点 掌握求两个数的最大公约数的方法。
教学难点 正确、熟练地求出两种特殊情况的最大公约数。
教学过程
一、创设情境
1、思考并回答:①什么是公约数,什么是最大公约数?②什么是互质数?质数与互质数有什么区别?(回答后做练习十四的第5题)
2、求30和70的最大公约数?
3、说说下面每组中的两个数有什么关系?
7和21 8和15
二、揭示课题
我们已经学会求两个数的最大公约数,这节课我们继续学习求这两种特殊情况的最大公约数(板书课题)
三、探索研究
1.教学例3
(1)求出下列几组数的最大公约数:7和21 8和15 42和14 17和19
(2)观察结果:通过求这几组数的最大公约数,你发现了什么?
(3)归纳方法:先让学生讲,再指导学生看教材第69页的结论。
(4)尝试练习。
做教材第69页的“做一做”,学生独立做后由学生讲评,集体订正。
四、课堂实践
1.做练习十四的第7题,学生独立观察看哪几组数是第一种特殊情况,哪几组数是第二种特殊情况,再解答出来。
2.做练习十四的第6题,先让学生独立作出判断后再让学生讲明判断的理由。
3.做练习十四的第9题,学生口答集体订正。
五、课堂小结
学生小结今天学习的内容、方法。
六、课堂作业
1、做练习十四的第8、10、11题。
2、有兴趣、有余力的同学可做练习十四的第13*题和思考题。
课后反思:有的数学问题比较复杂,光靠个人的学习,在短时间内达不到好的效果时,教学时,我让学生前后桌组成四人小组,小组中搭配上、中、下三类学生,由一位优等生任组长,组织组内同学讨论如下问题:(1)、一个数的约数与这个数的质因数有什么联系?
(2)、两个数的公约数与这两个数公有的质因数有什么联系?
(3)、怎样求两个数的最大公约数?
我们知道“最大公约数”一课最难理解的就是其算理,我也尝试过多种不同的教学组织形式,但无论是老师讲解还是学生看书,给学生的感觉大多是:太难懂了,算了吧!这时,何不让学生讨论讨论,让他们把自己的想法在组内说说?俗话说:三个臭皮匠顶一个诸葛亮。这样,不仅保证了全班同学的全员参与,使每位同学都有了发表自己见解的机会;而且通过小组之间的交流、启发、讨论、总结,学生的思路被打开了,想法在逐步完善着,学生个人对最大公约数算理的理解都会有不同幅度的提升;学生的归纳、推理、判断等能力也在这里得到提高;学生的合作意识,团结协作的精神也在不断增强;当自己的意见被采纳时,学生也在尽情地享受着交流成功的乐趣。如果学生能把学习当成一件“美差”去做,这不正是我们最想看到的吗?
文档为doc格式